问题标题:
【如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为O(0,0),A(4,0),B(4,3),C(0,3),G是对角线AC的中点,动直线MN平行于AC且交矩形OABC的一组邻边于E、F,交y轴、x轴于M】
更新时间:2023-06-08 03:14:57
问题描述:
如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为O(0,0),A(4,0),B(4,3),C(0,3),G是对角线AC的中点,动直线MN平行于AC且交矩形OABC的一组邻边于E、F,交y轴、x轴于M、N.设点M的坐标为(0,t),△EFG的面积为S.
(1)求S与t的函数关系式;
(2)当△EFG为直角三角形时,求t的值;
(3)当点G关于直线EF的对称点G′恰好落在矩形OABC的一条边所在直线上时,直接写出t的值.
顾雷回答:
(1)①当0<t<3时,如图1,过E作EH⊥CA于H,
∵A(4,0),B(4,3),C(0,3),
∴OA=4,OC=3,AC=5,
∵MN∥CA,
∴△OEF∽△OCA,
∴OE:OC=EF:CA,即t:3=EF:5,
∴EF=53